
GitHub in the Classroom: Lessons Learnt
Yu-Cheng Tu, Valerio Terragni, Ewan Tempero, Asma Shakil,

Andrew Meads, Nasser Giacaman, Allan Fowler, Kelly Blincoe ∗

University of Auckland
Auckland, New Zealand

(yu-cheng.tu,v.terragni,e.tempero,asma.shakil,andrew.meads,
n.giacaman,allan.fowler,k.blincoe)@auckland.ac.nz

ABSTRACT
The decision as to whether or not, and how, to use a Version Con-
trol System (VCS) in teaching is complex to make. There are a
number of use cases for how a VCS can be used in teaching, there
are several VCSs, each VCS has a variety of options for how to
access them, each has a number of third-party support systems,
and all combinations have different benefits, costs, and challenges.
At University of Auckland, we have made significant use of Git
and related systems (especially GitHub and GitHub Classroom). In
this paper, we offer the lessons we have learned from our collective
experience. While we by no means cover all of the possibilities,
we hope that instructors considering the use of VCSs, in particular
Git, will find the lessons we have learned helpful in making their
decisions regarding how to use VCS in teaching.

CCS CONCEPTS
• Applied computing → Education; • Social and professional
topics; • Software and its engineering → Designing software;

KEYWORDS
GitHub, GitHub Classroom, Version Control Systems, Student Ex-
periences, Code Review, Team Work, Program Assignments
ACM Reference Format:
Yu-Cheng Tu, Valerio Terragni, Ewan Tempero, Asma Shakil,, Andrew
Meads, Nasser Giacaman, Allan Fowler, Kelly Blincoe . 2022. GitHub in the
Classroom: Lessons Learnt. In Australasian Computing Education Conference
(ACE ’22), February 14–18, 2022, Virtual Event, Australia. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3511861.3511879

1 INTRODUCTION
As of today, Git1 is themost popular version control system (VCS) [8];
in the 2021 Stack Overflow survey, over 93% of professional devel-
opers reported using Git [28]. As a consequence, we are seeing
increasing usage of Git in university courses [8, 12, 18, 23]. In par-
ticular, the hosting service GitHub (GH)2 and its programming
education product GitHub Classroom (GHC)3 are becoming pop-
ular among instructors.
∗Authors listed in reverse alphabetical order.
1https://git-scm.com
2https://github.com
3https://classroom.github.com

ACE ’22, February 14–18, 2022, Virtual Event, Australia
© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Australasian Com-
puting Education Conference (ACE ’22), February 14–18, 2022, Virtual Event, Australia,
https://doi.org/10.1145/3511861.3511879.

The use of VCSs offers a number of benefits to support teach-
ing, such as distribution of teaching material [12] in particular
assessment support [26], collaborative development of teaching
material [12], and providing experience for teamwork [17]. This
has become significantly easier with the development of distributed
VCSs such as Git, in particular with cloud-based collaborative sup-
port services such as GH, GitLab4, and Bitbucket5.

Some cloud-based services now offer free products and support
for instructors and students to encourage Git uptake. GitLab has
GitLab for Education6. Bitbucket/Atlassian offers Bitbucket Educa-
tion for Student Developers7. GH, through GH Education8, offers
GHC and the GH Student Developer Pack9. At University of Auck-
land, we have mainly used GH and GHC, and they have primarily
been used to support various forms of assessment.

There is a wide variety of possibilities for how Git, GH, and
GHC can be used in teaching, with different benefits, challenges,
and costs [5, 8]. At University of Auckland, we have experienced
many of these possibilities. In this paper, we offer our collective
experience, including lessons learned. While we by no means cover
all of the possibilities, we hope that instructors that are planning to
use (or are currently using) Git in some capacity in their teaching
will benefit from our experience.

The rest of this paper is organised as follows. The next Section
provides an introduction to the various concepts relating to the
systems and technologies we discuss. Following that, Section 3
discusses research on use of VCSs in teaching. Section 4 gives an
overview of the courses on which we base our experience, to give
an idea of the variety of uses we have made with Git and related
technologies. The main contribution is in Section 5, where we
present our experience, issues we faced, and approaches we took
to resolve them. Finally, Section 6 presents our conclusions.

2 BACKGROUND
This Section provides a brief introduction to GH in the Classroom.
While we do not focus exclusively on use of GHC in this paper, in
order to understand it one must understand many of the concepts in
its ecosystem, such as Git and GH. These concepts are also relevant
to related services such as GitLab and BitBucket.

GHC provides a view of GH that is intended to be useful for
instructors and students. GH is a Git repository hosting service. So
the starting point to understanding GHC is Git.

4https://gitlab.com
5https://bitbucket.org
6https://about.gitlab.com/solutions/education
7https://bitbucket.org/product/education
8https://education.github.com
9https://education.github.com/pack

https://doi.org/10.1145/3511861.3511879
https://git-scm.com
https://github.com
https://classroom.github.com
https://doi.org/10.1145/3511861.3511879
https://gitlab.com
https://bitbucket.org
https://about.gitlab.com/solutions/education
https://bitbucket.org/product/education
https://education.github.com
https://education.github.com/pack


ACE ’22, February 14–18, 2022, Virtual Event, Australia Tu et al.

2.1 GIT
Git is a Version Control System (VCS) [19]. It provides support for
storing files and tracking any changes. The files, their histories, and
any other information is grouped together in “repositories” (usually
abbreviated “repo”). Unlike most earlier VCSs, which stored the
repos in a central location, Git is a distributed VCS, a type of version
control where the complete codebase—including its full version
history—is mirrored on every developer’s computer. A remote repo
will be created for a project, and any developer in the project team
will own their “local” copy by “cloning” the remote repo. As with
any VCS, developers must notify Git of any changes they made to
the files in the repo, a commit. This only updates the local repo. The
developer must push the changes to notify the “remote” repo and
must pull to learn of any changes made by other developers.

Because developers can change their “local” copy of the repo
independently of each other, when independent streams of work
need to be combined there is the possibility for the same file to
be changed in inconsistent ways, resulting in “merge conflicts”.
Git (and most VCSs) provides mechanisms for understanding and
resolving these conflicts.

Distributed VCSs bring several advantages over centralized VCSs
(e.g., SVN10): (i) they are resilient to data losses as each developer
has their own local copy of the repo; (ii) excluding pull and push
operations that communicates on the remote server, all other oper-
ations on the repo are very fast because are done locally; (iii) they
facilitate non-linear development.

One of the biggest advantages of Git is its branching capabilities.
Unlike centralized VCSs, Git branches are fast to create and easy to
merge. This facilitates non-linear development where developers
creates branches towork concurrently and independently on certain
features and eventually merge them in the main line of development
(e.g., the main branch).

The popularity of Git has lead to many tools and techniques to
improve its effectiveness and usefulness, such as integration with
IDEs, and Desktop applications. It has also lead to the development
of cloud services that provide (ironically) a central hosting service
for repos, such as GitLab, BitBucket, and GH.

2.2 GitHub (GH)
GH is the most popular development platform with a community of
more than 65 million users. The platform has more than 200 million
repos and it is considered to be the “main hub” for Git Version
Control.GH provides a web-based graphical visual interface that
help developers to both manage their own repos and to browse
other people’s repos. GH is also a social platform where develop-
ers showcase their project and the community learns and grows
together by reusing or learning from each other code [9].

Services such as GH, as well as providing hosting services for
Git repos, provide additional services for managing those repos and
for supporting collaboration. In particular, GH provides the pull
request (PR) mechanism.

An issue with the push operation is that it updates the remote
repo without any control from anyone on the project team. This
can lead to unanticipated issues. To avoid this, instead of pushing
changes to the remote repo, the developer can instead issue a PR.
10https://subversion.apache.org

This effectively asks the maintainer (typically delegated to senior
developers in the team) to do a pull. The maintainer can first
review the proposed changes, that is, carry out a code review. The
changes may then be approved (and so pulled into remote), or the
developer may be asked to revise the proposal.

GH (along with other hosting services) provides support for tem-
plate repositories. This allows for new repos to be created with useful
content that is common to many new projects (e.g. organisational
project management support).

Another important service of GH is GH actions. This is a mech-
anism that allows scripting of actions to be taken after a specified
Git or GH event has occurred. In particular, GH actions can be
used to set up a continuous integration (CI) workflow. For example,
when pushing new commits to GH, a workflow can be set up to
compile and then run tests over the new code.

GH provides several products. Importantly for teaching, it offers
GH Free user accounts. These accounts are free, and offer quite gen-
erous support, including unlimited repos. This means that students
face no barriers to getting a GH account. When students sign up
for an account they choose the account name.

2.3 GitHub Classroom (GHC)
GHC is “a teacher-facing tool that uses the GitHub API to enable the
GitHub workflow for education”3. GHC was created to facilitate and
improve the use of Git and GH for education. GHC adds yet more
features to GH. In particular it allows the creation of “classrooms”
and “assignments” within classroom. Classrooms provide the means
to organise assignments for a course, repos for the assignments,
and students to the repos they use for the assignment.

The assignment management process is as follows. When the
instructor creates an assignment, it must be associated with a vis-
ible repo (either it is public, or from the same GH organisation
the classroom belongs to). The repo must be a template repo. The
instructor names the assignment, and makes other decisions for
the assignment, such as whether students have admin rights, or the
repos are public (see Section 5.9).

Once the instructors create an assignment, GHC generates an
invitation link (URL). This link is then made available to the stu-
dents in the course. When they accept the invite, they get their
own clone of the assignment repo. They can then complete their
assignment with the contents of the (template) repo as the starting
point, meaning that all repos have consistent names and consis-
tent file structures. Crucially, the names of the repos are based on
the assignment name and the students’ GH account names, and
instructors have complete access to all of the repos (See Section 5.4).

3 RELATEDWORK
There has been an interest in computing education to use shared
online storage and version control systems [3, 11, 17]. These online
systems provide students tools for collaboration, version control,
and storage [11, 24, 30].

One of the motivations for using tools such as GHC in com-
puting education has been increased in team-based programming
assignments [25, 27]. GHC provides students and educators with
the ability to manage (and assess) multiple users contributing to
and collaborating on the same project [2].

https://subversion.apache.org


GitHub in the Classroom: Lessons Learnt ACE ’22, February 14–18, 2022, Virtual Event, Australia

Table 1: Course details

Course* Discipline Level Topic(s) Year(s) # Students Git Assumed Git-based
Git XP† Assessments‡

COMPSCI 331 Computer Science 3rd Year Large-scale Software Development 2021 93 GHC Basic 6
COMPSCI 399 Computer Science 3rd Year Capstone Course 2021 S1+S2 36,120 GH Expert 1
COMPSCI 701 Computer Science Graduate Software Maintainability 2020,2021 25,67 GHC Expert 4
COMPSCI 718 Computer Science Graduate Programming for Industry 2021 37 GHC None 4
COMPSCI 719 Computer Science Graduate Programming with Web Technologies 2021 65 GH, GHC None 14
SOFTENG 206 Software Engineering 2nd year Software Engineering Design 2019-2021 97,106,129 GH, GHC None 4
SOFTENG 281 Software Engineering 2nd year OOP & DSA 2021 270 GHC None 5
SOFTENG 325 Software Engineering 3rd year Software Architecture 2021 140 GHC Expert 6
SOFTENG 701 Software Engineering Graduate Software Quality 2021 95 GH, GHC Basic 5
SOFTENG 750 Software Engineering Graduate Software Tools & Techniques 2021 150 GH Expert 1
SOFTENG 751 Software Engineering Graduate High Performance Computing 2019,2020 69-45 GH, GHC Expert 1
SOFTENG 754 Software Engineering Graduate Software Requirements 2017-2021 65 GH Expert 3
COMPSYS 202 Computer Systems 2nd year OOP & DSA 2020 195 GHC None 5
MECHENG 270 Mechatronics 2nd year OOP & DSA 2020,2021 105, 114 GHC None 5
INFOSYS 221 Information Systems 2nd year Programming for Business 2021 40 GHC None 9
* Courses have been anonymised
† Assumed Git experience: None: expect to teach students everything they will use, Basic: expect to teach some things, Expert: expect to teach nothing.
‡ Assessments include assignments, projects, and lab exercises.

There are several studies aiming at assessing whether the use of
VCSs make teaching programming courses more effective.

Hsing and Gennarelli conducted a study on 7,530 students and
300 instructors to understand if GH provides better learning ex-
perience [13]. The authors compared the results of students and
instructors who use GH in the classroom with those who did not.
The authors found that students who used GH in the classroom
also felt they were more likely to take a similar course in the future
than students who did not use GH in the classroom.

Through using GHC in an Operating Systems class, Kertész re-
ports that students preferred the collaborative platform [17]. Some
of the reported benefits of using GHC includes: (i) learning from
each others faults (ii) getting help from colleagues much faster,
even if they are at distance (iii) learning a development platform
commonly used in industry (iv) making them aware of different
solutions to the same problem leading to better decisions on how
to implement certain tasks. Kertész also reported that students re-
flected a higher learning curve, which was due to learning both
version controlling (Git) and the GH platform while focusing on
the assignments from the class.

Haaranen and Lehtinen found that 92% of their students (N=141)
reported that using GHC was a valuable learning experience [12].
Haaranen and Lehtinen included tutorials in their lectures on how
to use Git, which appears to have contributed to the learning ex-
perience. Glassey surveyed eight tools that aims to overcome the
technical barrier of Git and GH within an educational context [10].

All of these studies provide evidence that using Git, GH, andGHC
in programming assignments is useful. Not only from a pedagogical
point of view (being Git and GH popular programming tools that
every STEM student should learn), but also to foster a productive
environment for both students and instructors. In contrast, we focus
on issues that we encountered and discuss how we addressed them.

4 COURSE CONTEXTS
We have used Git and related systems in a variety of courses, for
different subjects, different class sizes, different levels of experience,
and different contexts. Each variation has its own challenges, and
require different approaches. In order to understand the lessons we
present in the next Section, it is useful to know the context that our
lessons come from.

Table 1 overviews key “demographics” for the courses in which
the authors have used either GH or GHC. This includes a variety of
courses, including undergraduate to graduate level, varying class
sizes, and assumed Git experience. Section 5 discusses the many
lessons learned from these experiences.

5 LESSONS LEARNED
We present our collective experience with this variety as a set of
lessons we have learned.

5.1 Students are Students
One of the major challenge in teaching is that students are students.
Many students do not follow instructions [1, 21]. Variable prior ex-
perience between students is also a challenge [4, 6, 16, 29]. Students
with little prior experience using a VCS, can be at a disadvantage,
but students with experience may overestimate their abilities and
make careless errors [7, 22].

While none of this will come as a surprise to many instructors,
the complexity of Git seems to magnify the consequences. In par-
ticular, any exercise or assessment that required students to closely
follow instructions to be successful often lead to problems when
they did not, and the kinds of problems from incorrect use of Git
can be time-intensive for instructors to resolve. Some of what we
have learned is understanding what kinds of problem might occur
and various mitigation strategies.



ACE ’22, February 14–18, 2022, Virtual Event, Australia Tu et al.

5.2 Provide Git Instruction to Novices
In several of the courses where Git has been adopted, students in
those courses are novices—either for programming and software en-
gineering in general, or with Git specifically.We found that students
tended to become relatively comfortable with use of Git for indi-
vidual work, where the workflow simply involves cloning/pulling
from a remote repo, making edits, committing and pushing those
changes. However, even with these simple workflows, we noticed
that students would often commit files that are best left out of repos,
such as generated files (e.g. compiled code) and IDE configuration
files. Git provides a mechanism for avoiding this—.gitignore—but
many students seemed unaware of this feature (or even aware it is
needed), or not comfortable with updating it. In our experience, it
is best to provide students with a .gitignore, and instruct them
on its use and purpose.

Key Lesson 1: We should provide novice students with a
.gitignore file and explain its purpose so that they do not
commit unnecessary files to their repos.

5.3 Choose an Appropriate Git Workflow
Novice Git users tended to experience significant difficulty when
using Git for teamwork for the first time. We found that simply
referring novice students to documentation on a particular Git
workflow (such as feature branching [14] or fork and pull [15]) was
insufficient. Student teams would often become stuck with many
merge conflicts and main branches in inconsistent states, requiring
the intervention of an instructor to fix. For novice students, team-
work went much more smoothly in the cases where we mandated
the use of one particular Git workflow (as opposed to allowing stu-
dents to choose their own), and provided a “mini-project” designed
to give teams practice with the workflow prior to commencement
of the main project. Even so, issues with Git (and particularly, in
resolving merge conflicts) proved to be one of the most significant
drains on tutor and instructor time in these courses.

With regards to the choice of workflow to use for novice teams,
we recommend feature branching [14]. Other workflows such as
fork and pull [15] promise additional layers of protection against
accidentally corrupting the shared main branch. However, in our
experience, students experience far more issues due to these work-
flows’ higher complexity. The relative simplicity of feature branch-
ing outweighs any potential benefits of fork and pull for students
at this level. However, care must be taken to guide students away
from adopting poor practices such as long-lived feature branches.

Key Lesson 2: The feature branchingworkflow is a good option
for novice student teams as it is simple and easy to use.

Sometimes attempts to address one issue creates another. In one
course, we created a lab to help students learn about merge con-
flicts and how to resolve them. It is non-trivial to deliberately create
a merge conflict, and so the lab instructions required a series of
somewhat artificial steps by different team members, in particular
in when branches should be created and named. While these stu-
dents had some basic Git experience, for the most part they had
not worked in teams. What we only learned much later is that

some teams concluded that the instructions on branch creation and
naming is how branches should be used in general.

It is worth noting that the issues in the preceding paragraphs
apply only to students with little prior Git experience. Students in
our more advanced courses, having gained experience in earlier
courses and industry internships, generally showed the ability to
successfully manage complex collaborative team workflows.

Key Lesson 3: Proper instruction needs to be provided on how
to use Git, and its best practices. The instruction should be
commensurate with students’ prior experience.

5.4 Assessment and GHC
The use of Git opens possibilities for how the assessment process
can be conducted. GH and GHC offer even more possibilities. In its
simplest form, submission from the student side consists of keeping
their repos up-to-date (not always easy — students will be students).
This reduces many of the common problems made by students (e.g.
submitting on an LMS to the wrong course, or submitting the wrong
assignment or older versions of the assignment).

There are a number of options for instructors to assess the repos.
Provided instructors have access (Section 5.16), it is possible to
clone every student’s repo. As well as the state of their project at
the time the clone is made, instructors then have access to the entire
commit history. This provides options for assessment beyond just
based on the source code. A summary of what is available, including
what has been used by the authors, is below.

GHC autograding. GHC provides the option, called “autograd-
ing”, to apply automated tests to student submissions. This is based
on GH actions (see Section 2). Although many of our courses
involved automated tests, none of the authors used the autograding
feature. In part, this was because it seems quite limited in the kind
of testing it supports and when the tests could be executed, but
mostly because we already had our own automated tests from past
delivery of the courses, and it was simpler and more powerful to
use that.

From the students’ point of view, GHC’s autograder is somewhat
closer to a “summative” assessment in that it only activates when
pushing commits to the remote repo. Furthermore, for various
undergraduate courses where students are new to Git, (successful)
commits appear with pronounced red crosses denoting failed test
cases, which may concern (novice) students thinking this denotes a
failed commit (rather than failing test cases).

Offline automated processing. Many of the courses cloned the
students’ repos and then applied separately (and usually previously)-
developed automated processes (typically automated tests but other
processing may be done). This was particularly effective with GHC,
as the file structure expected by the automated system could be
specified in the template repo. Previously to using GHC, we had to
rely on students following instructions to provide the correct file
structure (See Section 5.1).

In some of the assignments, students are also provided with the
automated tests included in the repos (possibly with only a partial
set of the test cases provided to students). This not only guides
students with “formative” assessment for their development, but



GitHub in the Classroom: Lessons Learnt ACE ’22, February 14–18, 2022, Virtual Event, Australia

it increases the chances of students conforming to the expected
automated testing setup. Instructors could also use additional test
cases by overwriting the test file in the student repos.

Assessment via GH. All of the students’ repos are available
through the GH web interface. We found this provided a useful
means to perform certain kinds of assessment (e.g. understanding
the quality of commit comments). This was even more so with GHC,
through its support of linking student repos (see Section 5.18).

Use of GH actions. As noted above, GHC provides an autograd-
ing feature via GH actions. While no course used autograding,
several used GH actions directly to support automated testing.
This meant we could use existing test frameworks directly as a CI
workflow.

For example, for some courses, the marking was done through
Makefiles while others used Maven. Both cases could be handled by
a simple (and almost identical) CI workflow. This had the particular
advantage that the students could run the tests locally. GH provides
feedback as to whether the CI workflow succeeded, which meant
that students got confirmation that what they had submitted was
what they intended.

Custom Tools. The structure used by Git is well understood,
and there are a number of tools available to process this standard
structure (for example GitPython11). This allows for the develop-
ment of custom scripts or tools that can be applied to the student
assignment repos, and produce spreadsheets with useful statistics
(e.g., commit information such as times, sizes, and branch informa-
tion). This data can be further visualised to get an understanding
of students behaviour.

GH (and so GHC) also provides a REST API12 that can be used
to access not only the basic Git data, but also data specific to GH
features such as pull requests. This provides another option for
extracting data about students’ behaviour that does not require a
local clone of the students’ repos. One use we made of this facility
was to extract data that was available via GH, but was inconvenient
to access. With our REST-based tool we were able to extract it and
present it more usefully.

Allocating marks for Git usage. In some courses, students
are allocated a modest amount of marks (e.g. 1-2% of the overall
course grade) to encourage consistent Git usage. This provides
many benefits, for both students and instructors. From an academic
integrity perspective, this makes it more difficult for students to
plagiarise as they are aware that committing final versions with
poor evidence of “work in progress” is unacceptable – only drawing
attention to their assignment. Many students have also benefited
from their Git commits, in the cases of courses that required a
separate upload of their code to a separate platform (e.g. LMS) but
they had unknowingly submitted an incorrect version (but this
and other issues are overcome when instructors take submissions
directly from the repos).

11https://gitpython.readthedocs.io
12https://docs.github.com

Key Lesson 4: There are many possibilities on how to assess
students’ assignments, each one has pros and cons. We found
that custom offline automated systems are effective.

5.5 GitHub Actions Limitations
There are limits on GH actions usage with GH Free. The most
important is that each execution of workflow consumes processor
time. The limit for GHC is 2000 minutes of time per month per
Organization. This seems very generous suggesting GH Free is
sufficient for teaching. However, for one course (COMPSCI 331)
we had integration tests that were computationally expensive. This
still should not have been a problem as there were only about 15
teams and since they had the test frameworks available locally, the
expectation was that the workflows would not be executed often.

Unfortunately students will be students, and at least one team,
in the lead-up to the submission deadline, used the CI as their main
test vehicle, exhausting the budget for the whole class in 2 days.
While this did not prevent students from running the tests locally,
or pushing their changes to GH, when they did so they received
a message indicating the workflow had not executed. This was
disconcerting, particularly in the hours immediately before the
submission deadline. This was able to be resolved by purchasing
(for a small amount) extra allocation. However there were upset
students and an instructors’ Sunday afternoon was interrupted.

In later courses we tried an alternative approach. We set up
the workflow to only execute when the work was pushed to a
specific branch, namely submission. We advised the students that
they should do their development on main and then merge with
submission when they were ready to submit. We reasoned the
extra work involved (the merge) would discourage them from using
submission until it was really needed. But students will be students
and many just did all their development on submission (and see
lesson 5.6 below).

We have since learned that the REST interface to GH appears to
give us the ability to enable and disable workflows, and access the
workflow usage data. With this, we may be able to develop a better
way to manage the workflow budget.

An alternative is to use a product that provides a higher allo-
cation, such as GH Campus Program13, and this may be the best
option for institutions that have committed to making significant
use of GH. But for those who are still in the exploration stage, be
aware of GH actions allocation.

Key Lesson 5: There is a generous limit for use of GH actions,
however it can still be used up in some circumstances.

5.6 Branches in Template Repositories
A GHC assignment must be created based on an existing template
repo. As noted in Section 5.15, this has the benefit of allowing in-
structors to specify a specific organisation (e.g. directory structure)
for students to start with.

However, some forms of organisation cannot be specified this
way. For example, if the students are unfamiliar with working with
branches, it might be tempting to set up the repo with the necessary

13https://education.github.com/schools

https://gitpython.readthedocs.io
https://docs.github.com
https://education.github.com/schools


ACE ’22, February 14–18, 2022, Virtual Event, Australia Tu et al.

branches in place (e.g. to address the GH actions allocation issue
discussed in Section 5.5). Unfortunately a property of template
repositories is that the branches in any repo created from them will
have unrelated histories. This makes ordinary merging of branches
impossible. The proposed solutions involve quite sophisticated uses
of Git and we concluded having the students create their own
branches was in fact less error prone.

Key Lesson 6: Branches in template repos have unexpected be-
haviour, so it is better to let students create their own branches
when they are needed.

5.7 Changing the Template Repository
Students get their own “clone” of the template repository specified
in the GHC assignment, however it is not a clone in the usual sense.
If the instructor changes the template, students who have already
accepted the invite cannot just issue a pull and expect to see the
changes. There is not direct connection between their repo and
the original template. The only recourse seems to be to distribute
the changes separately and have the students incorporate them
manually. Students who accept the invite after the changes are
made do see the changes however.

Key Lesson 7: The template repository in GHC should be
checked thoroughly for correctness prior to sharing it with
students. It is cumbersome to make changes afterwards.

5.8 Pull Request Feature
One key feature of GHC is the ability to provide feedback to students
on their work via a pull request. When an assignment is created
on GHC, a feedback pull request can be automatically created for
each student repo. Instructors can leave general comments or line-
by-line comments on student code. In our experience, we find this
feature useful for providing specific feedback to individual students
when they have questions or bugs in their code. The instructors are
able to check student work more effectively directly on GH, which
is especially for online courses.

Prior to use of GH, working with students’ code meant arranging
a meeting time, receiving the code via email in zip files, viewing
via share screen, and similar somewhat inconvenient options. With
GHC, the instructors are now able to access individual repos and
provide prompt feedback via the pull request feature.

The pull request feature is helpful for answering assignment
questions. However, providing detailed feedback with line-by-line
comments for every assessment can be time consuming and re-
source intensive for large classes. For example, in COMPSCI 719,
the marker would take 10 to 30 minutes to mark a 10% coding as-
signment with thorough feedback. The assignment is estimated to
take a novice programmer 10 to 15 hours to complete.

Key Lesson 8: A pull request workflow where instructors have
to accept PRs is a great way to give feedback on student’s
code. However, is not practical for large classes, given the high
workload that it puts on instructors.

5.9 Give GH Admin Rights to Students
For our beginner courses (year 1 & 2) we prefer to not give admin
rights to students on their repos as they are new to GH and giving
them access to sensitive and destructive actions like managing
security or deleting a repo is not safe.

However, in our advanced courses, such as the capstone course
(COMPSCI 399) and graduate level courses (SOFTENG 701), we do
give teams admin rights on their repos. In these courses, students
require greater control on their repos and need to make several
independent management decisions. Although students have ad-
min rights on their repos, in some courses, we enforce restrictions
on admin permissions at the organization level. For example, in
COMPSCI 399, students cannot delete a repo, transfer it to another
account or change its visibility (which is set to private).

The repos need to be private to avoid plagiarism, since sometimes
multiple teams may work on the same project during a semester.
Once students finish the course, they sometimes request the in-
structor to make their repo public (Section 5.14). In other courses,
for example, SOFTENG 701, each team works on a different project
and can have public repos from the onset, since plagiarism is not
an issue in such cases.

Key Lesson 9: While its better to not give admin rights to
novice-level students, we found that students at experienced-
level courses might need admin rights to make independent
management decisions.

5.10 Branch Protection
In courses where students work in teams and all team members
have full admin rights on their repos (such as in COMPSCI 399),
we encourage students to enforce protection rules on important
branches of their repos, such as the main branch and/or the devel-
opment branch. GH provides branch protection rules which prevent
a branch from accidental deletion or loss of commit history on
the branch due to a “force push”. We have observed that the most
common branch configuration option that students use is to “re-
quire pull request reviews before merging” on the main and/or the
development branch. This option ensures that a pull request cannot
be merged into the protected branch before it receives a specific
number (which is configurable) of approving reviews.

Key Lesson 10: When students work in teams, it is preferable
to enforce branch protection rules to avoid improper workflows.

5.11 Legacy master branch
GH recently change the default branch from master to main.14 We
encountered problems where our repos had been set up before the
renaming took place and so used master, but after renaming tools
such as IDEs expected main. While this is less of a problem now, we
have also encountered students with legacy settings in their tools,
and so we still need to deal with this.

14https://github.blog/changelog/2020-10-01-the-default-branch-for-newly-created-
repositories-is-now-main

https://github.blog/changelog/2020-10-01-the-default-branch-for-newly-created-repositories-is-now-main
https://github.blog/changelog/2020-10-01-the-default-branch-for-newly-created-repositories-is-now-main


GitHub in the Classroom: Lessons Learnt ACE ’22, February 14–18, 2022, Virtual Event, Australia

5.12 GitHub Organizations
When it comes to managing the multiple repos for courses, GH’s no-
tion of an Organization is the natural choice. The bigger question
tends to be whether the Organization is per course, or per course
offering. The authors have tended to define a new Organization for
each course offering, mostly because of the clarity and granularity
it brings with having a separate account encapsulating the relevant
offering’s repos, Teams, and instructor/TA access. Collectively, the
separate Organizations have made their management easier while
more easily allowing replication of assignment repo names. This
structure and separation also mirrors what is typically seen in LMSs,
in particular Canvas which is used at University of Auckland.

For the management of the Organization, the instructors are
addedwith theOwner role. If TAs are also expected to access student
repos, they also need to be added with the Owner role. Students,
on the other hand, have the standard Member role (or even Outside
Collaborator) to ensure they do not have access to any private repos.
In the case of group-based assignments, a Team is created within
the Organization, with the corresponding group of students. To
provide access to the private repos, this is defined by the repo’s
Manage access setting, by either specifying students individually or
as a Team with (usually) just write access.

If this seems like a lot of administrative work for an instructor
to manage, it is. This is where GHC alleviates many of the manual
process surrounding access to individual and group-based repos,
and of course forking repos to follow a consistent naming conven-
tion. A Classroom in GHC is associated with a GH Organization,
and instructors have the option to either reuse the same GH Orga-
nization across multiple Classrooms (i.e. multiple course offerings),
or to simply associate with a new Organization each time. Behind
the scenes, GHC is creating the repos, creating Teams, and assign-
ing access to repos for the respective GH Organization. More on
group-based assignments via GHC follows in Section 5.13.

Key Lesson 11: GH’s notion of an Organization better lends
itself to a single course offering, as opposed to being reused
over multiple offerings of the same course. This provides easier
management and clarity, particularly for archival purposes.

5.13 Group Assignments with GHC
To facilitate the management of group-based repos, GHC provides
the option (when creating the assignment) to specify whether it
will be a group assignment or an individual assignment. When the
group assignment option is selected, this in turn provides additional
fields for the instructor to set:

“Name your set of teams” (required) is used for represent-
ing the set of teams. If a course has multiple group assign-
ments, and each group assignment involves different groups,
this field allows distinguishing the different sets of teams.
When creating a group assignment and there is already an
existing set of teams, then an option appears to select it
rather than defining a new set of teams. If an existing set of
teams is specified, this means students do not need to select
their team when accepting the new assignment (as they will
be in the same Team).

“Maximummembers per team” (optional) is used to pro-
hibit further students joining a particular team, given that
team has reached the limit. If some teams have fewer mem-
bers than others, this means others could potentially “peek”
by momentarily joining them and then leaving from the GH
Teams interface.

“Maximum teams” (optional) is used for prohibiting further
teams from being created, when this limit is reached.

An assignment title is required for group assignments (as in the
case of individual assignments); this is used as the prefix for the
name of the generated repos. Also similar to individual assignments,
no repos are forked at this stage. When a student accepts the in-
vitation link to a GHC group assignment, the repo is forked, and
they are presented with one of two situations. If the “Name your
set of teams” setting referred to an existing set of teams (i.e. from a
previous group assignment where students were already allocated),
then students immediately proceed to accessing their new repo
(in this case, another repo is created in the same GH Organiza-
tion Team—see Section 5.12). In the situation that the “Name your
set of teams” setting refers to a new set of teams, students will be
presented with one of two options:

(1) If other students (not necessarily from the same team) have
already accepted the invitation link before them, a list of
existing teams will appear. The name(s) of the team(s) that
appear in this list are defined in case #2 below. The student
has the option to select any one of these existing teams
(red-flag #1), regardless of whether it is their actual team.

(2) If the student does not see their team name in the list of
existing teams of case #1 above (either because there are no
existing teams, or they are the first member of their team to
accept the invitation link), they can create a new team by
specifying any name they wish (red-flag #2).

In the case of #2, a new repo is forked (and given the name
“<assignment-name>-<team-name>”), along with a Team (given the
name “<team-name>”)—both of which are added to the respective
GH Organization. The student accepting the link is added into that
team, and can therefore access the new Team’s repo.

It is important to recognise that GHC does not have any notion
of which team students should belong to. As such, it relies on
the students to (i) correctly initially define team names (so as the
instructor can easily find and reference the teams’ repo), and (ii)
correctly select their team (so as not to gain access to another team’s
repo—until an instructor intervenes by removing them from the
respective GH Organisation Team).

In the case of following a systematic naming convention, this is
essential in simplifying the instructor’s management of teams. To
address this, the authors have resorted to one of two approaches:

(1) If there are few teams, the instructor can iteratively (i) accept
the assignment link themselves, (ii) create a new team using
the naming convention they desire (this now creates the
Team and their repo), and (iii) remove themselves from that
Team via the GH Organization interface. This needs to be
repeated until all the teams are created. When a maximum
number of allowed teams is specified in the GHC assignment
settings, students will therefore not be able to define new
teams, and are instead required to join one of the existing



ACE ’22, February 14–18, 2022, Virtual Event, Australia Tu et al.

teams. Although this approach results in the satisfaction
of perfectly consistent Team (and repo) names, it is clearly
tedious and unscaleable for a large number of groups.

(2) The alternative is to let students define their own team name,
but provide guidelines on how to name their team. Regardless
of how clear instructions are, students will be students—some
groups are still likely to get this naming incorrect. What
is worse, upon realising on their own (or pointed out by
their peers) that they did not follow the naming convention,
students will leave the Team (via the GH web interface),
reaccept the assignment invitation link, and create another
team with the correct name. The problem here is that the
(now deserted) Teamwith the incorrect name is still claiming
towards the quota of the “Maximum teams” field of the GHC
assignment setting. The instructor will therefore need to go
to the GH Organization, and delete the deserted Team to
allow other groups to form their team via GHC.

Given that the instructor has already specified all the group
assignment parameters in GHC, it would have been appreciated to
at least offer the option to automatically pre-generate the Teams,
using the name of teams as a prefix, followed by an incremented
integer as the suffix.

Instructors need to also be careful of students joining incor-
rect teams, whether it was intended or otherwise. If no limit was
specified for the (optional) “maximum members per team”, or if a
particular team had not reached its limit, students are able to join
(and gain access) to another team’s repo. What is more concerning,
is that a student could easily accept the invitation link for one team,
clone the team’s repo, remove themselves from the GH Team, then
repetitively accept the invitation again and again for different teams
(that have not filled up) and effectively have a snapshot of many
groups’ repos.

Hopefully a future feature of GHC will be to allow instructors to
predefine team allocations, by way of uploading CSV or connecting
to the LMS’s group information.

Key Lesson 12: Setting up group-based assignments in GHC
is not trivial. Many things can go wrong. Following a system-
atic naming convention and being mindful students may move
between open GHC teams is essential in managing groups.

5.14 Repos Can Move: A Double-Edged Sword
With Git, it is possible to move15 an entire repo, from one remote
repo to another remote repo, along with the full history of commits
(regardless of the Git cloud service(s) involved). From the context of
a course, this has both useful and highly undesirable consequences.
The ability to move repos is useful when students reach out to
instructors at the end of the course, wishing to make their repo
public or share with prospective employers as part of their resume
portfolio. While this is easy to process through the GH interface,
it is simply easier to direct students to the instructions of creating
their own repo and moving (a copy of) their assignment to it. But
here comes the undesirable consequences: it is possible for students
to operate on their own (self-created and self-managed repo) for the
assignment, and merely move it to the instructor-allocated remote
15For example: https://atlassian.com/git/tutorials/git-move-repository

repo at a later time, where it was unknown who else had access to
their personal repo. Even with a non-empty instructor-allocated
repo, students can still –force push to it. The only giveaway to
detect this is when inspecting the commit logs, and recognising the
original commit (e.g. the one from the instructor, or automatically
generated by GHC) no longer exists.

Key Lesson 13: A repo can be moved to another empty repo.
This is great when the course ends and students want to grow
their portfolio, but means students can force push other repos
to it, raising potential academic misconduct concerns. Check
that the instructor’s initial commit is still there to detect such
cases.

5.15 Choosing GHC over GH
GHC is intended to support teaching, and so there are benefits for
using it compared to the basic GH service (but see Section 5.16).

For programming assignments there are several benefits of fol-
lowing the GHC assignment management process over simply use
GH. Providing a template repo is useful because all the submissions
will have a shared setting prepared by the instructors based on the
characteristic of the assignment. This is particularly important if
automated tests are used as part of the assessment process (Section
5.4). Such tests typically rely on all repos having the same structure.
By starting with a common template with the expected structure,
students submissions are more likely to have the correct structure.

Use of plain GH for assignments is possible, and there are good
reasons for doing so (See Section 5.16), but it requires that students
create their own repos in their GH accounts. When they create
these repos they can choose arbitrary names, making them hard
to identify, and structure it anyway they like. If they make their
repos public, there is the possibility of plagiarism. If they make
them private, instructors do not have access unless the students
remember to invite the instructors to be collaborators in order for
submissions to be made (or an alternate submission is needed).
And then the instructors have to remember to accept the invitation
in time (they expire after seven days). While clear and detailed
instructions can be given, students will be students (Section 5.1).
Our experience is that it is not uncommon for there to be problems
with 5–10% of the submissions, which in courses with 200 or more
students represents a significant cost to instructors.

In contrast, with GHC, the repos are created with a consistent
naming scheme, based on a common structure, can be required to
be private, and instructors are automatically made collaborators.
The consistent naming scheme makes it easier to find a student’s
repo, and in fact GHC supports more usefully identifying the repo
(See Section 5.18).

Key Lesson 14: For undergraduate courses GHC would be a
better choice than GH, as GHC simplifies the educational use
of GH.

5.16 Choosing GH over GHC
When deciding to use GH for assignments, one decision is whether
to use it directly or through GHC. The reasons for choosing GHC
have been discussed (Section 5.15). There are also good reasons for
choosing GH.

https://atlassian.com/git/tutorials/git-move-repository


GitHub in the Classroom: Lessons Learnt ACE ’22, February 14–18, 2022, Virtual Event, Australia

One such reason is when we wanted students to learn and experi-
ence the use of Continuous Integration (CI) [20]. In our courses
we experienced CI with both GH actions and hosted continuous
integration services, such as Travis-CI16. Travis-CI is used to build
and test software projects hosted on GH. Similarly to GH actions,
Travis-CI seamlessly integrates with GH, automatically triggering a
build and test of the code for every push on a watched branch (often
the main branch). Travis-CI is currently the dominant cloud-based
continuous integration service on GitHub, but there are not much
differences with the younger and rising GH actions service.

The issues with GHC and CI is the available workflow budget
(see Section 5.5). For instance, Travis-CI gives, for free, only one
single-threaded build service for all the students. This is a problem
when the deadline is approaching and all students are pushing at
the same time. Also, from a pedagogical point of view students
should learn how to setup, use, and leverage CI services during
development. This will not be possible if GHC setups and manages
all the Travis-CI builds on the students behalf. For these reasons,
in the course SOFTENG 754 we had to rely on student-created
private repos, because CI was a fundamental aspect of the course.
By doing so, we experienced first hand all the disadvantages of
student-created private repos discussed in Section 2.2. Hopefully,
in the future will be possible to associate each GHC student repo to
a single Travis-CI build. Notably, we had to ask students to request
(for free) the GH Student Pack to use Travis-CI with private repos.

One other instance where we need to rely on student-created
repos is in one of our capstone course COMPSCI 399. In this course,
students work on different projects in teams of 7-8 people. There is
no starter boilerplate code to share in such a scenario and the tem-
plate repository-approach offered by GHC is not needed. Further-
more, the teams may create multiple repos based on their project
requirements. For example, many projects are web-based applica-
tions and students prefer to create separate repos for the front-end
and back-end code in such cases. Given the big team size, most
teams divide themselves into smaller sub-teams that work sepa-
rately on different parts of the code. The organization of code into
separate repos on GH allows the sub-teams to define their own
workflows.

In general, we found that in graduate level courses GH would
be more appropriate over GHC. For example, in one of our gradu-
ate level courses (SOFTENG 701), each team works on a different
project. Thus, academic integrity issues are no longer a concern.
Students are encouraged to make their repos public, and this also
helps students to build up their GH profile, which can be useful
in their job applications. The use of GH over GHC also allows stu-
dents to learn how to setup a repo from scratch, including creating
appropriate documentation and setting up a .gitignore file. An-
other benefit is that students have control over all aspects of the
repo, allowing them to make management decisions. This enables
greater critical thinking for these more advanced students, who
can consider the tradeoffs of different repo settings. Some of the
problems discussed above, are also mitigated since each group has
their own repo and the CI limits are not spread across the entire
class.

16https://travis-ci.org for public repos, https://travis-ci.com for private repos

Key Lesson 15: In graduate courses or higher stage under-
graduate courses where students should have access to advance
tools (e.g., CI) and management decisions, GH would be a better
choice than GHC.

5.17 Submission Due Date
GHC enables the instructors to optionally set a deadline for each
assignment. The instructors are able to access each student repo
that contains the latest commit before the deadline via a separate
“submitted” link. This feature is useful as the instructors no longer
need to manually download each assignment repo on the due date.
However, we learned that there is an ongoing bug with this feature.
“not submitted” would show up for some repos even if the students
have made some commits before the specified due date. We also
learned that students are able to commit their code after the due
date. As the bug is not yet resolved, we have to explicitly clone the
repos on the due date. See Section 5.4 on our assessment process.

Key Lesson 16: The GHC feature to set a deadline for assign-
ments is not reliable (as of today), manually downloading the
GHC repos on the due date is a better option.

5.18 Synching/Linking Accounts with LMS
While repos created by accepting a GHC assignment invite have
a consistent naming scheme, part of the name is the GH account
name chosen by the student (See Section 2.2). While the problem
of finding a particular student’s repo is made easier due to the
consistent scheme, in a large class it can still take some effort. GHC
addresses this problem by providing a roster for each classroom.
Instructors can upload the list of the students in their course to
the relevant classroom, and then the students’ repos can be linked
to the roster. This allows repos to be found using the student’s
University identity.

There are two ways for the instructors to create the roster of
the students in their courses. The instructors can manually import
a roster by uploading a CSV or a text file that contains student
identifiers as student ID. Alternatively, the instructors can import
the roster from a Learning Management System (LMS) such as
Canvas orMoodle. To associate the students with their GH accounts,
students must identify themselves from the roster and manually
link their accounts when they first accept the GHC assignment.

From our experience, we find that syncing the roster directly
from Canvas is fast and convenient. However, there are several
caveats. The first caveat is that the connection between the LMS
and GHC does not automatically link students’ GH accounts with
the GHC roster. Students are still required to manually link their
accounts. If students accidentally or maliciously pick the wrong
name from the roster, then the instructors would need to manually
unlink the accounts.

Another caveat is that there are only three options for identifying
each student in the roster: User IDs, Names, Emails. We use emails
as the student identifiers as some students might have the same
names in the same course and the user IDs imported from the LMS
are not always equivalent to the student IDs. Sometimes, we find
that the students are unable to find their emails from the roster if the
class is large. Also, it is not just students that appear in the roster.

https://travis-ci.org
https://travis-ci.com


ACE ’22, February 14–18, 2022, Virtual Event, Australia Tu et al.

Anyone who appears on the LMS class list, which may include
instructors and other support staff, appears in the GHC roster. This
can create confusion, for example when trying to determine which
students have not yet engaged with GHC.

To manage the roster in GHC, especially for large classes, we
thinkmanually creating and uploading the list of the students would
be a better approach. To minimise confusion for the students and
the instructors, we use a combination of names, usernames, and
student IDs as student identifiers. Notably, there is no need to create
the list of students from scratch: instructors can extract a roster
from LMSs in CSV and revise it accordingly. The tradeoff is that
the roster must be adjusted should the course enrolment change.

Key Lesson 17: We found that using the GHC feature that
connects to LMSs to import student roster has some caveats. It
is often better to manually create and import CSV files for the
students’ rosters.

6 CONCLUSIONS
The decision of whether to introduce a new technology into a course
is difficult to make at the best of times, but it is especially difficulty
when the technology is as complex as Git, where when things
go wrong they can go really wrong. While there is an enormous
amount of documentation on Git, and related systems such as GH
and GHC, it is so enormous that finding the information needed for
the decision is hard. And often the information does not contain
the “gotchas” that only become evident through actual use. This
paper is meant to help fill that gap.

In this paper we have presented the hard-won lessons regarding
using GH in the Classroom based on the experience of 8 instructors
successfully teaching 15 distinct courses, 6 with multiple offerings
(25 offerings in total). What we can say is, there will be additional
teaching load when introducing GH to the Classroom, as is the
case when any new technology is introduced, but our conclusion
is that it is worth it. Once the issues are worked out, GH can add
significant value to courses. It helps instructors with development
of assignments and management of student submissions. It helps
students with working on the assignments and submitting them.
They also really appreciate the use industry-standard tools in an
academic context. We hope the lessons we have presented help
others with making the decision to, and the use of, GH in the
Classroom.

REFERENCES
[1] Raad A Alturki et al. 2016. Measuring and improving student performance in

an introductory programming course. Informatics in Education-An International
Journal 15, 2 (2016), 183–204.

[2] Berk Anbaroğlu. 2021. A collaborative GIS programming course using GitHub
Classroom. Transactions in GIS (2021).

[3] Miguel A Angulo and Ozgur Aktunc. 2019. Using GitHub as a teaching tool for
programming courses. In 2018 Gulf Southwest Section Conference.

[4] Susan Bergin and Ronan Reilly. 2005. Programming: factors that influence
success. In Proceedings of the 36th SIGCSE technical symposium on Computer
science education. 411–415.

[5] Esmail Bonakdarian. 2017. Pushing Git & GitHub in undergraduate computer
science classes. Journal of Computing Sciences in Colleges 32, 3 (2017), 119–125.

[6] Pat Byrne and Gerry Lyons. 2001. The effect of student attributes on success
in programming. In Proceedings of the 6th annual conference on Innovation and
technology in computer science education. 49–52.

[7] Dennis E Clayson. 2005. Performance overconfidence: metacognitive effects or
misplaced student expectations? J. of Marketing Education 27, 2 (2005), 122–129.

[8] David C Conner, Matthew McCarthy, and Lynn Lambert. 2019. Integrating Git
into CS1/2. Journal of Computing Sciences in Colleges 35, 3 (2019), 112–121.

[9] Mohammad Gharehyazie, Baishakhi Ray, and Vladimir Filkov. 2017. Some from
here, some from there: Cross-project code reuse in GitHub. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). IEEE, 291–301.

[10] Richard Glassey. 2019. Adopting git/GitHub within teaching: A survey of tool
support. In Proc. of the ACM Conference on Global Computing Education. 143–149.

[11] Ángel Manuel Guerrero-Higueras, Vicente Matellán-Olivera, Gonzalo Esteban
Costales, Camino Fernández-Llamas, FJ Rodriguez-Sedano, and MÁ Conde. 2018.
Model for evaluating student performance through their interaction with version
control systems. Proc. of the Learning Analytics Summer Institute Spain (2018).

[12] Lassi Haaranen and Teemu Lehtinen. 2015. Teaching Git on the side: version
control system as a course platform. In Proceedings of the 2015 ACM Conference
on Innovation and Technology in Computer Science Education. 87–92.

[13] Courtney Hsing and Vanessa Gennarelli. 2019. Using GitHub in the classroom
predicts student learning outcomes and classroom experiences: Findings from
a survey of students and teachers. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education. 672–678.

[14] Eirini Kalliamvakou, Daniela Damian, Kelly Blincoe, Leif Singer, and Daniel M
German. 2015. Open source-style collaborative development practices in commer-
cial projects using GitHub. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, Vol. 1. IEEE, 574–585.

[15] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2014. The promises and perils of mining GitHub.
In Proc. 11th working conference on mining software repositories. 92–101.

[16] Zoe A Kersteen, Marcia C Linn, Michael Clancy, and Curtis Hardyck. 1988.
Previous experience and the learning of computer programming: The computer
helps those who help themselves. Journal of Educational Computing Research 4,
3 (1988), 321–333.

[17] C. Kertész. 2015. Using GitHub in the classroom - a collaborative learning
experience. In 2015 IEEE 21st International Symposium for Design and Technology
in Electronic Packaging (SIITME). 381–386. https://doi.org/10.1109/SIITME.2015.
7342358

[18] Joseph Lawrance, Seikyung Jung, and Charles Wiseman. 2013. Git on the cloud
in the classroom. In Proceeding of the 44th ACM technical symposium on computer
science education. 639–644.

[19] Jon Loeliger and Matthew McCullough. 2012. Version Control with Git: Powerful
tools and techniques for collaborative software development. " O’Reilly Media, Inc.".

[20] Mathias Meyer. 2014. Continuous integration and its tools. IEEE software 31, 3
(2014), 14–16.

[21] Daniel M Oppenheimer, Tom Meyvis, and Nicolas Davidenko. 2009. Instructional
manipulation checks: Detecting satisficing to increase statistical power. Journal
of experimental social psychology 45, 4 (2009), 867–872.

[22] Vennila Ramalingam, Deborah LaBelle, and SusanWiedenbeck. 2004. Self-efficacy
andmental models in learning to program. In Proceedings of the 9th annual SIGCSE
conference on Innovation and technology in computer science education. 171–175.

[23] Arnold Rosenbloom, Sadia Sharmin, and Andrew Wang. 2017. Git: Pedagogy,
use and administration in undergraduate CS. In Proceedings of the 2017 ACM
Conference on Innovation and Technology in Computer Science Education.

[24] Matthew NO Sadiku, Sarhan M Musa, and Omonowo D Momoh. 2014. Cloud
computing: opportunities and challenges. IEEE potentials 33, 1 (2014), 34–36.

[25] Pilar Sancho-Thomas, Rubén Fuentes-Fernández, and Baltasar Fernández-Manjón.
2009. Learning teamwork skills in university programming courses. Computers
& Education 53, 2 (2009), 517–531.

[26] Diomidis Spinellis. 2005. Version control systems. IEEE Software 22, 5 (2005),
108–109.

[27] Diomidis Spinellis. 2012. Git. IEEE software 29, 3 (2012), 100–101.
[28] Stack Overflow. 2021. 2021 Developer Survey. https://insights.stackoverflow.

com/survey/2021.
[29] Harriet G Taylor and Luegina C Mounfield. 1994. Exploration of the relationship

between prior computing experience and gender on success in college computer
science. Journal of educational computing research 11, 4 (1994), 291–306.

[30] Ewan Tempero and Yu-Cheng Tu. 2021. Assessing Understanding of Main-
tainability using Code Review. In Australasian Computing Education Conference.
40–47.

https://doi.org/10.1109/SIITME.2015.7342358
https://doi.org/10.1109/SIITME.2015.7342358
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021

	Abstract
	1 Introduction
	2 Background
	2.1 GIT
	2.2 GitHub (GH)
	2.3 GitHub Classroom (GHC)

	3 Related Work
	4 Course Contexts
	5 Lessons Learned
	5.1 Students are Students
	5.2 Provide Git Instruction to Novices
	5.3 Choose an Appropriate Git Workflow
	5.4 Assessment and GHC
	5.5 GitHub Actions Limitations
	5.6 Branches in Template Repositories
	5.7 Changing the Template Repository
	5.8 Pull Request Feature
	5.9 Give GH Admin Rights to Students
	5.10 Branch Protection
	5.11 Legacy master branch
	5.12 GitHub Organizations
	5.13 Group Assignments with GHC
	5.14 Repos Can Move: A Double-Edged Sword
	5.15 Choosing GHC over GH
	5.16 Choosing GH over GHC
	5.17 Submission Due Date
	5.18 Synching/Linking Accounts with LMS

	6 Conclusions
	References

